NVIDIA GeForce GTX 680M SLI vs NVIDIA GeForce GTX 670MX SLI vs NVIDIA GeForce GTX 680MX
NVIDIA GeForce GTX 680M SLI
► remove from comparison
The NVIDIA GeForce GTX 680M SLI is a high-end DirectX 11-compatible graphics card for laptops, consisting of two GeForce GTX 680M. Each card has a 28nm GK104 core based on the Kepler architecture. Compared to the desktop GeForce GTX 670, the GTX 680M also features 1344 CUDA cores, but the mobile counterpart operates at reduced core and memory clock speeds (720/1800MHz vs 915-980/3004MHz). The clocks for the SLI-setup are identical. With SLI, each card usually renders a single frame (AFR mode). Therefore, it may suffer from micro stuttering in low fps ranges of 30fps. This happens because of different timespans between two frames (e.g., irregular delays between sequential frames).
Architecture
The Kepler architecture is the successor to the Fermi architecture that first appeared in laptops with the GeForce 400M series. The GK104 Kepler core offers eight shader blocks, called SMX, that are clocked at the same speed as the central core. Although more shader cores are available in the Kepler architecture as compared to the Fermi design, the Kepler shaders are still expected to be up to twice as power efficient. However, due to the missing hot clock of the shader domain, two shaders of a Kepler chip are of similar speed to one shader of a Fermi chip (as the latter is clocked twice as fast). PCIe 3.0 is now supported by the mobile Kepler series and an optional Turbo mode can automatically overclock the Nvidia card by a theoretical 15 percent if the laptop cooling system allows it. The implementation of this boost mode is done in the BIOS, but it is ultimately dependent upon the manufacturer of the laptop.
Performance
The graphics performance of the GeForce GTX 680M SLI is on the same level as the Radeon HD 7970M Crossfire, thus making both the fastest mobile solution as of summer 2012. In our Benchmarks, the 680M SLI is just marginal in front. The GPUs have enough power to run games of 2012 fluently with Full HD resolution, maxed out graphical settings and antialiasing. Even extremely demanding titles like Metro 2033, Alan Wake or Risen 2 are playable at the highest detail settings.
Features
The improved feature set now includes support for up to 4 active displays. Furthermore, high resolution monitors of up to 3840x2160 pixels can now be connected using DisplayPort 1.2 or HDMI 1.4a if available. HD-Audio codecs, such as Dolby TrueHD and DTS-HD, can be transmitted via bitstream mode through the HDMI port. However, as most laptops will feature Optimus, the integrated GPU will likely have direct control over the display ports and may limit the feature set available by the Nvidia Kepler cards.
The 5th generation PureVideo HD video processor (VP5) is also integrated in the GK104 core and offers hardware decoding of HD videos. Common codecs such as MPEG-1/2, MPEG-4 ASP, H.264 and VC1/WMV9 are fully supported up to 4K resolutions while VC1 and MPEG-4 are supported up to 1080p. Two streams can be decoded in parallel for features such as Picture-in-Picture. Another novelty is the inclusion of a dedicated video encoding engine similar to Intel QuickSync that can be accessed by the NVENC API.
The power consumption of the GeForce GTX 680M SLI should double compared to a single GTX 680M. Therefore, only large desktop replacements can handle the heat.
NVIDIA GeForce GTX 670MX SLI
► remove from comparisonThe NVIDIA GeForce GTX 670MX SLI is a high-end DirectX 11-compatible graphics card for laptops, consisting of two GeForce GTX 670MX. Each card has a 28nm GK104 core based on the Kepler architecture. With SLI, each card usually renders a single frame (AFR mode). Therefore, it may suffer from micro stuttering in low fps ranges of 30fps. This happens because of different timespans between two frames (e.g., irregular delays between sequential frames).
Architecture
The Kepler architecture is the successor to the Fermi architecture that first appeared in laptops with the GeForce 400M series. The GK106 Kepler core offers five shader blocks, called SMX, that are clocked at the same speed as the central core. In the GTX 670MX, all 5 blocks are active leading to the 960 CUDA cores. Although more shader cores are available in the Kepler architecture as compared to the Fermi design, the Kepler shaders are still expected to be up to twice as power efficient. However, due to the missing hot clock of the shader domain, two shaders of a Kepler chip are of similar speed to one shader of a Fermi chip (as the latter is clocked twice as fast). PCIe 3.0 is now supported by the mobile Kepler series and an optional Turbo mode can automatically overclock the Nvidia card by a theoretical 15 percent if the laptop cooling system allows it. The implementation of this boost mode is done in the BIOS, but it is ultimately dependent upon the manufacturer of the laptop.
Performance
The graphics performance of the GeForce GTX 670MX SLI depends on the driver support of the benchmark / game. Ideally it can be up to twice as fast as a single GTX 670MX, ranking it as one of the fastest mobile graphics solution for laptops in 2012. The performance should be on average similar to a single GTX 680M, but with the problems of micro stuttering (see above) and a higher power consumption. The GPUs have enough power to run games of 2012 fluently with Full HD resolution, maxed out graphical settings and antialiasing. Even extremely demanding titles like Metro 2033, Alan Wake or Risen 2 are playable at the highest detail settings.
Features
The improved feature set now includes support for up to 4 active displays. Furthermore, high resolution monitors of up to 3840x2160 pixels can now be connected using DisplayPort 1.2 or HDMI 1.4a if available. HD-Audio codecs, such as Dolby TrueHD and DTS-HD, can be transmitted via bitstream mode through the HDMI port. However, as most laptops will feature Optimus, the integrated GPU will likely have direct control over the display ports and may limit the feature set available by the Nvidia Kepler cards.
The 5th generation PureVideo HD video processor (VP5) is also integrated in the GK104 core and offers hardware decoding of HD videos. Common codecs such as MPEG-1/2, MPEG-4 ASP, H.264 and VC1/WMV9 are fully supported up to 4K resolutions while VC1 and MPEG-4 are supported up to 1080p. Two streams can be decoded in parallel for features such as Picture-in-Picture. Another novelty is the inclusion of a dedicated video encoding engine similar to Intel QuickSync that can be accessed by the NVENC API.
Power Consumption
The power consumption of the GeForce GTX 670MX SLI should double compared to a single GTX 670MX. Therefore, only large desktop replacements can handle the heat.
NVIDIA GeForce GTX 680MX
► remove from comparison
The NVIDIA GeForce GTX 680MX is a high-end DirectX 11-compatible graphics card commonly found on Apple iMac products. It is based on the 28nm GK104 Kepler architecture similar to the GTX 680M, but features more CUDA cores (1536 vs. 1344) and a higher memory clock rate (720/2500MHz vs. 720/1800MHz)
Architecture
The Kepler architecture is the successor to the Fermi architecture that first appeared in laptops with the GeForce 400M series. The GK104 Kepler core offers eight shader blocks, called SMX, that are clocked at the same speed as the central core. In the GTX 680MX, all eight blocks are active for a total of 1536 CUDA cores. Although the Kepler architecture can utilize more shader cores than a Fermi chip, its shaders can be up to twice as power efficient. However, due to the missing hot clock of the shader domain, two shaders of a Kepler chip are of similar speed to one shader of a Fermi chip (as the latter is clocked twice as fast).
PCIe 3.0 is now supported by the mobile Kepler series and an optional Turbo mode can automatically overclock the Nvidia card by a theoretical 15 percent if the laptop cooling system allows it. The implementation of this boost mode is done in the BIOS, but it is ultimately dependent upon the manufacturer of the laptop.
Performance
Thanks to the additional shader cores and the faster memory, the graphics performance of the GeForce GTX 680MX should be 15 - 25 percent above the GTX 680M and similar to the Desktop GTX 580. The GPU has enough power to run demanding games of 2012 fluently with Full HD resolution and maxed out graphical settings. Battlefield 3, Skyrim, and Crysis 2, for example, are playable at the highest detail settings.
As an example, the GTX 680MX can play Battlefield 3 on ultra settings at 30 FPS on a native resolution of 2560x1440 during our benchmark sequence. For fluent multiplayer gameplay, the resolution and/or anti-aliasing should be reduced (e.g. 1920x1080 Ultra at 45 fps).
Features
The improved feature set now includes support for up to 4 active displays. Furthermore, high resolution monitors of up to 3840x2160 pixels can now be connected using DisplayPort 1.2 or HDMI 1.4a if available. HD-Audio codecs, such as Dolby TrueHD and DTS-HD, can be transmitted via bitstream mode through the HDMI port. However, as most laptops will feature Optimus, the integrated GPU will likely have direct control over the display ports and may limit the feature set available by the Nvidia Kepler cards.
The 5th generation PureVideo HD video processor (VP5) is also integrated in the GK104 core and offers hardware decoding of HD videos. Common codecs such as MPEG-1/2, MPEG-4 ASP, H.264 and VC1/WMV9 are fully supported up to 4K resolutions while VC1 and MPEG-4 are supported up to 1080p. Two streams can be decoded in parallel for features such as Picture-in-Picture. Another novelty is the inclusion of a dedicated video encoding engine similar to Intel QuickSync that can be accessed by the NVENC API.
The power consumption of the GeForce GTX 680MX should be somewhat higher than the GTX 680M, making it difficult to cool for laptops. The Apple iMac is currently the most readily available product to utilize this high-end card.
NVIDIA GeForce GTX 680M SLI | NVIDIA GeForce GTX 670MX SLI | NVIDIA GeForce GTX 680MX | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GeForce GTX 600M Series |
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Codename | N13E-GTX | N13E-GR | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Architecture | Kepler | Kepler | Kepler | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pipelines | 2688 - unified | 1920 - unified | 1536 - unified | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Speed | 720 MHz | 600 MHz | 720 MHz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Memory Speed | 3600 MHz | 2800 MHz | 5000 MHz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Memory Bus Width | 2x 256 Bit | 2x 192 Bit | 256 Bit | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Memory Type | GDDR5 | GDDR5 | GDDR5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max. Amount of Memory | 2x 4096 MB | 2048 MB | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shared Memory | no | no | no | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
API | DirectX 11, Shader 5.0 | DirectX 11, Shader 5.1, OpenGL 4.2 | DirectX 11, Shader 5.0, OpenGL 4.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
technology | 28 nm | 28 nm | 28 nm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Features | Optimus, SLI, PhysX, Verde Drivers, CUDA, 3D Vision, 3DTV Play | Optimus, SLI, PhysX, Verde Drivers, CUDA, 3D Vision, 3DTV Play | Optimus, SLI, PhysX, Verde Drivers, CUDA, 3D Vision, 3DTV Play | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Notebook Size | large | large | large | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Date of Announcement | 04.06.2012 | 01.10.2012 | 23.10.2012 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power Consumption | 150 Watt | 122 Watt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Transistors | 5.1 Billion | 3.5 Billion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Link to Manufacturer Page | www.geforce.com | www.geforce.com |
Benchmarks
3DM Vant. Perf. total + NVIDIA GeForce GTX 680M SLI
specvp11 snx-01 + NVIDIA GeForce GTX 680M SLI
Average Benchmarks NVIDIA GeForce GTX 680M SLI → 100% n=4
Average Benchmarks NVIDIA GeForce GTX 670MX SLI → 67% n=4
Average Benchmarks NVIDIA GeForce GTX 680MX → 70% n=4

* Smaller numbers mean a higher performance
1 This benchmark is not used for the average calculation
Game Benchmarks
The following benchmarks stem from our benchmarks of review laptops. The performance depends on the used graphics memory, clock rate, processor, system settings, drivers, and operating systems. So the results don't have to be representative for all laptops with this GPU. For detailed information on the benchmark results, click on the fps number.

The Witcher 3
2015
Dead Space 3
2013
Far Cry 3
2012
Assassin´s Creed III
2012
Hitman: Absolution
2012
Dishonored
2012
World of Tanks v8
2012
Fifa 13
2012
F1 2012
2012
Borderlands 2
2012
Guild Wars 2
2012
Counter-Strike: GO
2012
Darksiders II
2012
Sleeping Dogs
2012
The Secret World
2012
Max Payne 3
2012
Dirt Showdown
2012
Diablo III
2012
Risen 2: Dark Waters
2012
Mass Effect 3
2012
Alan Wake
2012
Anno 2070
2011
Battlefield 3
2011
Batman: Arkham City
2011
Fifa 12
2011
F1 2011
2011
Crysis 2
2011
StarCraft 2
2010
Metro 2033
2010Average Gaming NVIDIA GeForce GTX 680M SLI → 100%
Average Gaming 30-70 fps → 100%
Average Gaming NVIDIA GeForce GTX 670MX SLI → 81%
Average Gaming 30-70 fps → 73%
Average Gaming NVIDIA GeForce GTX 680MX → 95%
Average Gaming 30-70 fps → 91%
NVIDIA GeForce GTX 680M SLI | NVIDIA GeForce GTX 670MX SLI | NVIDIA GeForce GTX 680MX | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
low | med. | high | ultra | QHD | 4K | low | med. | high | ultra | QHD | 4K | low | med. | high | ultra | QHD | 4K | ||||
The Witcher 3 | 72 | 43.6 | 26.4 | 14.2 | |||||||||||||||||
Dead Space 3 | 133 | ||||||||||||||||||||
Hitman: Absolution | 85.8 | 78.8 | 70.6 | 44.1 | 67.6 | 62.7 | 53.3 | 24.7 | 55.4 | 34.4 | |||||||||||
F1 2012 | 173 | 141 | 134 | 109 | 124 | 102 | 98 | 79 | 97.5 | ||||||||||||
Sleeping Dogs | 108.5 | 79.4 | 22.6 | 140.7 | 102.9 | 84.6 | 26.7 | 99 | 31.1 | ||||||||||||
Battlefield 3 | 115.2 | 103.3 | 65.6 | 103.5 | 90.6 | 81 | 41.9 | 126 | 104 | 92 | 45.6 | ||||||||||
NVIDIA GeForce GTX 680M SLI | NVIDIA GeForce GTX 670MX SLI | NVIDIA GeForce GTX 680MX | |||||||||||||||||||
low | med. | high | ultra | QHD | 4K | low | med. | high | ultra | QHD | 4K | low | med. | high | ultra | QHD | 4K | < 30 fps < 60 fps < 120 fps ≥ 120 fps | 1 1 | 3 1 | 3 1 | 1 1 2 | | | < 30 fps < 60 fps < 120 fps ≥ 120 fps | 2 2 | 4 | 1 3 | 2 1 1 | | | < 30 fps < 60 fps < 120 fps ≥ 120 fps | 1 1 | 1 1 | 1 1 2 | 1 3 1 1 | | |
For more games that might be playable and a list of all games and graphics cards visit our Gaming List